

Aerobraking Maneuver #1 TARGET ALTITUDE

AB-1 TARGET ALTITUDE

- Determine the Altitude Target for AB-1
 - MOI at 313 km
 - Baseline Targeted 0.01 W/cm² ≈ 138 km.
 - Main Phase \approx 0.4 W/cm², 110 km.
 - Unsure of the Atmospheric Density.
- Too High, Don't Sense the Atmosphere
 - Harder to plan the next maneuver ?
- Too Low, Burn Up.

And the Survey Says ...

- Procedure: Poll the Experts
 - What is the Highest altitude where the Density Might Equal the Critical Density, 143 Kg/km³ ≈ 175° Redline Panel Temp.?

Richard Zurek	100 - 130 km
Todd Clancy	115 - 120 km
Jere Justus	132 - 154 km
Steve Bougher	124 - 134 km
Gerry Keating	140 km (Be Safe, not Sorry.)

RECOMMENDATION

TARGET AB-1 to 135 km.

- Expected period change per orbit ≈ 600 seconds is detectable.
- Estimates Based on Perihelion, where density is greatest.
- Highest Values from MarsGRAM have global dust storm.

FEEDBACK:

- Frank Palluconi is concerned that 135 km might be too low.
- Some of the Estimates are Greater than 135 km.
- Memo sent to the Experts that Provided Input for Review.
- Justus: 154 km -> 143 km with new version MarsGRAM 3.4
- Recent Clancy data seems to indicate a lower density.

CRITICAL SCALE HEIGHT

How are we going to use the "Atmospheric Density Measurement" During Walkin to Plan the Next ΔV ?

CRITICAL SCALE HEIGHT

- Define the "Critical Scale Height" ...
 - The Scale Height as a function of Δh required to reach the "Critical Density" where the Panels might be Damaged.
 - $H_s^*(\Delta h)$ = the Scale Height where Rho(h_o + Δh) = "Critical Density"
 - $-h_0$ = The Current Altitude
 - Rho(h) = The Density at Altitude h. (Know Rho(h_o))
 - $-\Delta h$ = The proposed altitude Change for the Next Maneuver.
 - "Critical Density" = 143 kg/km³ ≈ 175° Panel Redline.
- Is the "Critical Scale Height" for the Planned ∆h LESS than the smallest REALISTIC value?

Some Equations

Exponential Atmosphere:

$$\rho = \rho_o \bullet e^{\left(\frac{h_o - h}{h_S}\right)}$$

Solve for Critical Scale Height,
$$h_s$$
: $h_s^* = \frac{h_o - h}{\ln\left(\frac{\rho_{CRITICAL}}{\rho_o}\right)}$

- Using ρ_o and h_o as the reference values, and
- $\rho = \rho_{\text{Critical}}$ at new altitude, h,
- Solve for the Scale Height.
- Small altitude changes $(h_o h) = small h_s^*$ to get required density change.

Critical Scale Height for Baseline & +30% Error

Baseline & Proposed Walkin Maneuvers

Table 1: Baseline Aerobraking Maneuvers

AB-#	H _o (km)	$\rho_{O}^{(kg/km^3)}$	h _o - h (km)	DV (m/s)	h _s * (km)	Qdot (W/cm ²
2	135	2	18	0.72	4.2	0.011
3	117	20	4	0.19	2.0	0.10
4	113	40	3	0.14	2.4	0.20
Post AB-4	110	60				0.33

Table 2: Aerobraking Maneuvers with Equal Values for h_s*

AB-#	H _o (km)	$\rho_{O}^{(kg/km^3)}$	h _o - h (km)	ΔV (m/s)	h _s * (km)	Qdot (W/cm ²)
2	135	2	12.9	0.52	3.0	0.011
3	122.1	11.6	7.6	0.36	3.0	0.06
4	114.5	32.5	4.5	0.21	3.0	0.18
Post AB-4	110	60				0.33

Planning Chart for Operations

Scale Height and Altitude Change Required to Reach CRITICAL DENSITY from Estimated Pre-Maneuver Density

Fixed Maneuver Sizes (3 km Hs*)

Scale Height and Altitude Change Required to Reach CRITICAL DENSITY from Estimated Pre-Maneuver Density

CONCLUSIONS

- Before Each Maneuver, Check if the Critical Scale Height is Much Less than a REALISTIC Scale Height.
- Minimum REALISTIC Scale Height is ≈ 6 km.
- Expected Scale Height 7 10 km.
- Designing Walkin for EQUAL Critical Scale Heights
 - Results is a Critical Scale Height of 3 km.
 - Half the Mimimum Realistic Scale Height.
- Possible to add Uncertainty to the Measurement before Testing the Critical Scale Height.

QUESTIONS

- How Many Maneuver Sizes Can we Pick From ?
 - The three "Nominal" Maneuvers ?
 - Something In Between ?
- How Many Maneuver Sizes to "Guarantee"
 3 Maneuver Walkin ?

Scale Heights from MarsGRAM 3.4

WALKOUT TRADEOFFS

LATITUDE at ABX (& Power) vs Lifetime

Number of Days vs Orbit Lifetime

Change In MEAN Local Solar Time

Number of Orbits During Walkout

Periapsis Altitude at ABX

Translational ΔV During Walkout

Sizes for Daily Maneuvers

CONCLUSIONS

- Smaller Orbit Lifetime Means
 - Less Time to Recover from an Anomaly, but
 - Less Time at Risk of an Anomaly.
 - Less Translational (and AACS) ∆V.
 - Can Pick Lifetime to Center ABX in the Eclipse for <u>Power</u>.
 - Can Reduce Intensive Operations Period by 1 2 weeks.
 - Can affect final Local Solar Time by 5 minutes.
 - Can reduce the number of Orbits by 150 Orbits.
- What Orbit Lifetime Should we Plan for ?